Try increasing gamma if dark sections aren't distinguished

Try increasing gamma if dark sections aren't distinguished

Sunday, April 21, 2019

sunspot AR 2738 and a few proms

Despite being at solar minimum, a moderately large sunspot was well positioned mid April:
AR 2738 4/14/19 WL

AR 2738 4/14/19 Ha
AR 2738 4/14/19 Ha and WL

The following weekend as the spot rotated off the face to the edge, i watched very dynamic activity on the limb, including a prominence lifting off and a very bright ball of plasma:
Ha 4/20/19
...which i just missed with the camera :(

but there was a nice prominence on the opposite side:
Ha 4/20/19

Full disk view through light incoming clouds:
Sun Ha 4/20/19 through light clouds causing glare





Image details:
C11 edge on ASA DDM 80, baader film, baader continuum filter, IR/UV block filter
first light with C11 soloar filter, love the cooling fans, unfortunately seeing was poor
Lunt 60 PT on manual alt-azm mount
Eastbluff, CA

4/14/19 poor seeing (image reduced to 50%)
C11
19:45 UTC
ASI 290 MM
FPS (avg.)=147
Shutter=0.918ms
Gain=351 (58%)

Lunt double stacked
20:56 UTC
ASI 290 MM
FPS (avg.)=103
Shutter=9.699ms
Gain=67 (11%)

4/20/19
first prom
ASI 290 MM
22:55 UTC
second 22:58 UTC
20 second video
111 fps
Shutter=1.0 ms
gain 351
best 12%

full disk with light clouds
ASI 174 MM
23:09 UTC
45 fps
Shutter=10.00ms
Gain=225 (56%)


Saturday, April 20, 2019

Markarian's chain


Speaking of the Virgo supercluster, here's Markarian's chain, a photogenic string of galaxies in the Virgo cluster:
Markarian's chain 4/2010
including Messier 87 lower left
Here at low magnification, M 87 (featured in the prior post) is the nondescript elliptical galaxy in the lower left.

bonus feature:
close up of the "eyes", a pair of interacting galaxies in Markarian's chain
NGC4438 & NGC 4435
Note the disturbed dark lane and streaming outer stars in the left hand galaxy, resulting from gravitational interaction with it's neighbor


this is occasionally the basis for my avatar ;)


Details:
markarian's chain
FS60C @f/4, IDAS-LPR filter, SX H9, H9C.
Lum 45x5 min 223x1 min
RGB 101x5 min
los alamitos, CA 4/3-17/2010 bortle white skies

NGC4438 & NGC 4435
nexstar 8 gps, f/6.3 FR, H9C
350 minutes (70x5)
approximately 2/3 with IDAS LPR filter, 1/3 without
4/23,24,30/2006!
Los Alamitos CA
bortle white skies, mediocre seeing, worse transparency

Thursday, April 18, 2019

Messier 87 the smoking gun galaxy

Messier 87, the smoking gun, is a super giant galaxy--over a trillion  stars--in the constellation Virgo.  M 87 lies 55 million light years away, at the center of the Virgo supercluster which includes our local galaxy group. 

Images of the black hole at the center of M87 were released last Wednesday, 4/10/19.  Inspired by the image, I photographed the galaxy from my backyard that night. 

At low power, M 87 looks like a boring elliptical galaxy, just round blob of light (see following post).  This close up shot from 4/10/19 shows blue "smoke" rising out of the core to the right which is actually plasma ejected from the core as the black hole devours matter.  

M 87 close up
streak of blue plasma projects up and to the right
Needless to say, the resolution of this image is not fine enough to capture the black hole.  The scale of this image is 0.4 arc seconds (angular measurement, as in degrees, minutes, and seconds) per pixel.  However, due to atmospheric distortion, the resolution of the image is about 2.0 arc seconds (FWHM).  On a good night, i can capture images below 2 arc second resolution, the best i've ever captured (once) was just under 1 arc second.  For reference, the resolution of the Hubble space telescope is typically 0.1 arc second.  The resolution of the event horizon telescope that captured the black hole was .00002 arc seconds.  

Here's the Event Horizon Telescope image:
Event Horizon Telescope Image of the supermassive black hole (6.5 billion solar masses) in the center of the galaxy M 87


How can you get such amazing resolution? 
The resolution of a telescope is limited by it's diameter.  However, if you can combine the signal captured by multiple telescopes at the same time, the resolution is limited by the distance between the telescopes.  The event horizon telescope combined images captured by an array of radio telescopes all around the globe (including the south pole) giving an effective diameter approaching the size of the planet earth.  Interestingly, i've heard that the release of the image was partially delayed by having to physically transport a hard drive from the south pole (which cannot be easily reached all year round).  

The phenomena surrounding a black hole are truly amazing: of course at the event horizon no light can escape the gravitational pull of the black hole.  But beyond that is an area where photons themselves orbit the black hole multiple times.  creeping out from this are areas where light may bend 270 degrees: so if you look on the left side of a black hole, you'll see an image from the black hole facing left.  beyond that 180 degrees, so you'll see the image of our own galaxy reflected back, further out 90 degrees, so you'll see an image from the black hole facing right...
Here's a trippy youtube video simulating this phenomenon while two black holes are merging:


And here's an interesting video giving more detail on the light bending phenomena near a black hole:




Details:
8" LX200R, SX Trius 694 0.4"/px, ASA DDM60
astrodon LRGB E SERIES GEN-II
Luminance 4/10/19
12 of 46 120 second subs, 7 of 63 60 second subs
(threw out all with FWHM >5.5 pixels)
RGB 4/12/19
15x120 sec each channel
fair seeing (excluded ~2/3 subs)
the jet is very bright, the image is a simple linear stretch without sharpening
Eastbluff, CA Bortle white

EHT press release with more details on the black hole image:
https://eventhorizontelescope.org/

 A bit more science:
The Astrophysical Journal Letters
https://iopscience.iop.org/journal/2041-8205/page/Focus_on_EHT

Tuesday, February 12, 2019

A red flame

Captured a few solar prominence images between clouds this weekend with a hydrogen alpha scope .  I typically process these as black and white for maximum contrast, but red (the actual color) seemed most appropriate today:
Solar Prominence 2/9/2019
Here's a prominence from the next day.  I cranked the exposure to bring out some of the faint detail.  
Solar Prominence 2/10/19
Same prominence with shorter exposures:
Solar Prominence 2/10/19
wider crop for fun:

Image details:
Lunt 60 PT on manual alt-azm mount
ASI 290 MM
Eastbluff, CA 2/9/19  22:03 UT, 2/10/19 19:05 UT

2/9/19
double stacked
20 second video 60 fps
Shutter=2.786ms
best 25%

2/10/19
single stacked
20 second video 48 fps (full frame by mistake)
Shutter=2.379ms to 20.58ms
best 25%

Monday, October 8, 2018

spacex falcon 9 10/7/2018 launch

Why the 10/7/2018 falcon 9 launch was special:

1. it was launched from vandenberg airbase aiming south over the ocean
so it could be seen all the way from los angeles to san diego
2. the launch took place after dark, so the bright rocket could be seen well
3. it was done shortly after dark, so as the rocket rose above the shadow of the earth the exhaust was back-lit by sunlight, glowing brightly in the sky, presenting a cinematic view to los angeles and orange counties
4. the first stage rocketed back to vandenberg, landing at the airbase--the first ground landing of a falcon rocket on the west coast--"the falcon has landed" crowed spacex launch control


falcon-9 10/7/2018

In this image the cone (upper left) is the second stage of the rocket heading into orbit with its satellite payload.  
to the right of this, the exhaust (above the earth's shadow) is brightly lit by the sun.
The bright spot to the right of the palm tree is the first stage rocketing back to vandenberg, you can see a swirl of maneuvering thruster exhaust adjacent to it.  

another shot, later on:

I assembled a series of stills sandy captured with her compact hand held camera into a rudimentary animation:

For information on future launches, you can subscribe to this email list
http://mailman.qth.net/mailman/listinfo/launch-alert
which will send launch alerts, as well has information on the more spectacular launches


image details
Sony DSC-RX100M3
f/1.8, 1/10 sec, iso 3200 9 mm
corona del mar, CA
10/7/2018
the clouds broke just in time to give a clear view of the launch, then returned
photoshop, topaz denoise for the still shot

Wednesday, October 3, 2018

Solar minimum

the magnetic activity of the sun has an 11 year cycle:
at its peak, there are frequent sunspots, flares, etc.  while at minimum, not much is happening which is good for astronauts and satellites, not so good for aurora watchers and solar imagers.  interestingly the cycle was discovered in 1843 and then traced back to the earliest observations of sunspots by galileo.  we're now approaching solar minimum (2019).   

Here's an image of the sun from 8/25/18
Sun Ha 8/25/2018 with reverse polarity sunspot AR 2720

though difficult to detect in this hydrogen alpha image, there are pairs of small sunspots in the bright patches towards the bottom of the image.  AR 2720 to the left and AR 2719 to the right.  

the left hand pair (AR 2720) was noted to have reverse polarity and thought to be a harbinger of the next solar cycle.  However, subsequent analysis suggests that the pair were not part of the new cycle, based on their position on the solar surface.  

interestingly, the folks who study this closely are ham radio operators, as solar activity blanks out their radios.

Image details:
Ha full disk Lunt 60 PT/50 DS double stacked
zwo ASI 174MM
1.194 ms exposure
gain 223
15 frames captured
8/25/18 21:50 UT
adding an IR/UV blocking filter did not seem to have much effect (was wondering if there's some leakage)

this was also first light for a new camera which allows full disk imaging of the sun with my Ha scope.  unfortunately the frame rate was less than i'd hoped for, so still working on this...new USB cable and checking high speed seems to have helped 

Monday, October 1, 2018

sunspots in white light vs hydrogen alpha

Here's an image of a sunspot grouping comparing the standard "sunspot" visual filter image with a hydrogen alpha image:
Active solar region 1/11/2015 Ha vs white light




Here's a time lapse in Ha, nothing too dramatic, but there is some motion. 
Ha time lapse 1/11/2015 23:04-23:26 UTC
Imaging details/discussion:
found this one clearing out the hard drive
Ha close up Lunt 60 PT single stacked, on grab & go alt-azm mount, zwo asi 120mm-s
time lapse 19 frames over 22 minutes

the white light capture was done with an 8" SCT, baader photographic film with and without an IR/UV cut filter. the IR/UV cut filter improved contrast
20 second capture
FPS (avg.)=138
Shutter=2.869ms
Gain=73